השאלות ידי מצביעים לילדים.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "השאלות ידי מצביעים לילדים."

Transcript

1 מבני נתונים פתרונות לסט שאלות דומה לשאלות מתרגיל 4 השאלות 1. כתבו פונקציה לא רקורסיבית שמדפיסה ב- Postorder את כל הנתונים המאוכסנים בעץ בינארי T. הפונקציה אינה צריכה להיות תלויה במימוש העץ T. הניחו שנתון אובייקט מסוג Tree ופעולות בסיסיות המוגדרות עליו, כגון: T. בעץ n פעולה המחזירה את הילד השמאלי של קדקוד - LeftChild(Node (n T. בעץ n פעולה שמחזירה את הנתונים המאוכסנים בקדקוד - Retrieve(Node (n T. פעולה המחזירה את הקדקוד שהוא שורש העץ - Root() T. בעץ n פעולה המחזירה את הקדקוד שהוא אחיו הימני של - RightSibling(Node (n T. בעץ n פעולה המחזירה את הקודקוד שהוא ההורה של Parent(Node (n וכך הלאה. אין צורך לכתוב את הפעולות האלה, ואתם יכולים להגדיר פעולות נוספות סבירות להן אתם זקוקים, ולהשתמש בהן בפונקציה שלכם. רמז: השתמשו במחסנית כמבנה נתונים נוסף. השימוש במחסנית יהיה כקופסה שחורה. 2. נתון עץ בינארי T שבקדקודים שלו יש מספרים טבעיים, חלקם זוגיים, וחלקם אי-זוגיים. העץ ממומש על ידי מצביעים לילדים. כתבו אלגוריתם (T LongestEvenPath(Tree שיחזיר את אורכו של המסלול הארוך ביותר שמתחיל בשורש ומורכב רק מנתונים זוגיים (המסלול אינו חייב להסתיים בעלה). דוגמה: בעץ הבא מודגש המסלול הארוך ביותר (שמתחיל בשורש ומכיל רק זוגיים), האלגוריתם יחזיר, אם כן, את אורכו לשם כתיבת האלגוריתם השתמשו בשני תורים,Q1. Q2 לכל תור מוגדרות הפעולות הבסיסיות הבאות: ) ( MakeEmpty לרוקן את התור. ) ( IsEmpty מחזירה 1 אם התור ריק, 0 אחרת.

2 data) EnQueue (TreeNode מכניסה את הנתון data לתור. הנתון data יכול להיות צומת בעץ, או מצביע לצומת בעץ, עפ"י בחירתכם. ) ( DeQueue מוציאה ומחזירה את הנתון שבראש התור. בנוסף אתם יכולים להשתמש רק בזיכרון נוסף בגודל קבוע (אין להשתמש ברקורסיה). שימו לב, האלגוריתם שלכם ישתמש ב- Q1,Q2 ובפעולות המוגדרות עליהם כבקופסאות שחורות! 3. עץ חיפוש בינארי מחויט (Threaded) הוא עץ חיפוש שבו בכל קדקוד שומרים פרט לנתון ולשני מצביעים לילדים, עוד שני ביטים IsLeft, IsRight שמציינים האם לקדקוד הזה יש ילד שמאל או ילד ימין בהתאמה. אם = 0 IsLeft בקדקוד מסוים, פירוש הדבר שאין לו ילד שמאלי, ואז נשמור במצביע left של אותו קדקוד מצביע לקדקוד שיופיע לפניו במעבר Inorder על העץ (במקום.(NULL אם בקדקוד מסוים = 0,IsRight פירוש הדבר שלקדקוד אין ילד ימני, ואז נשמור במצביע right של אותו קדקוד מצביע אל הקדקוד שיופיע אחריו במעבר.Inorder א. הגדירו ב- ++C מחלקה עבור קדקוד מתאים ומחלקה עבור עץ חיפוש מחויט הבנוי מקדקודים כאלה. ב. כתבו ב- ++C את פעולת Insert עבור עץ חיפוש מחויט וכל פעולה אחרת שבה אתם משתמשים בפונקציה.Insert תארו גם את האלגוריתם שבו אתם משתמשים ונתחו את זמן הריצה של הפונקציה שכתבתם. ג. כתבו ב-++ C פונקציה לא רקורסיבית שעוברת על עץ כזה ב-.Inorder מה זמן הריצה של הפונקציה? א. הוכיחו שבעץ בינארי (לאו דווקא שלם) מספר העלים גדול באחד ממספר הקדקודים מדרגה 2. ב. הוכיחו שבעץ בינארי שלם מגובה h יש 1+h 1 2 קדקודים. (גובה העץ - מספר צלעות מכסימלי לאורך מסלול משורש לעלה כלשהו). ג. מה מספר העלים בעץ בינארי שלם בעל n קדקודים כפונקציה של n? הוכיחו תשובתכם!.4 5. תארו אלגוריתם המקבל מצביע לקדקוד x בעץ חיפוש בינארי ומחזיר מצביע לקדקוד העוקב Successor של x בסדר הממוין הנקבע על-ידי סריקת Inorder של העץ. (ניתן להניח שכל הנתונים שונים, ואז העוקב של הקדקוד x הוא הקדקוד בעל המפתח הקטן ביותר הגדול מהמפתח של הקדקוד ). x האלגוריתם יחזיר NULL אם x הוא הקדקוד בעל המפתח המקסימלי בעץ (ולכן אין לו עוקב). מה יעילות האלגוריתם שמצאתם? הערה: הניחו שהעץ ממומש ע"י מצביעים דו-כוונים (גם לילדים וגם להורה).6 נתונים 3 עצים בינאריים, 3 T 1,T 2,T וידוע שכל אחד מהם מכיל את n המספרים.{1,2, n עוברים על T 1 ב-,Inorder על T 2 ב- Preorder ועל T 3 ב-.Postorder התוצאה המתקבלת בשלושת המעברים האלה היא n,1,2, כלומר המספרים מודפסים בסדר עולה. הוכיחו או הפריכו את הטענות הבאות: א. T 1 הוא בהכרח עץ חיפוש בינארי. ב. T 2 הוא בהכרח עץ חיפוש בינארי. ג. אם נעבור על T 2 ב- Postorder ועל T 3 ב- Preorder נקבל אותו פלט בשני המקרים (לאו דווקא כמובן הפלט n,,1,2).

3 8.7 א. נתון עץ AVL הבא: i) ציירו את העץ המתקבל לאחר הוספת המפתח 15 לעץ. (ii ציירו את העץ המתקבל לאחר הורדת המפתח 3 מהעץ המקורי. ב. נתון עץ בינארי T הכולל n קדקודים, כאשר בקדקודים יש מספרים שלמים השונים זה מזה. העץ T ממומש על ידי מצביעים לילדים. (i) כתבו אלגוריתם יעיל ככל האפשר המחזיר 1 אם העץ T הוא עץ חיפוש בינארי, ומחזיר 0 אחרת. מה יעילותו של האלגוריתם שכתבתם במקרה הגרוע כפונקציה של n? הסבירו תשובתכם. כמו-כן, הוכיחו את נכונות האלגוריתם שכתבם. (ii) כתבו אלגוריתם יעיל ככל האפשר המחזיר 1 אם העץ T הוא עץ,AVL ומחזיר 0 אחרת. מה יעילותו של האלגוריתם שכתבתם במקרה הגרוע? הסבירו תשובתכם. 8. נתון ה- ADT הבא לשמירת נקודות (y,x) במישור הממשי, התומך בפעולות הבאות: (y Insert(x, מכניס את הנקודה (y,x) למבנה ביעילות,O(log(n)) כאשר n הוא מספר הנקודות במבנה. (y Delete(x, מסיר את הנקודה (y,x) מהמבנה ביעילות,O(log(n)) כאשר n הוא מספר הנקודות במבנה. a) SameFactor(double מדפיס את כל הנקודות במבנה המקיימות, x = a y ביעילות log(n)),o(k + כאשר n הוא מספר הנקודות הכולל במבנה, ו- k הוא מספר הנקודות מהמבנה המקיימות קשר זה. הציעו מבנה נתונים למימוש ה- ADT הנ"ל, ופרטו איך תתבצע כל אחת מהפעולות. הערה: ניתן להשתמש במבני הנתונים שנלמדו בכיתה כקופסאות שחורות, מבלי לממשן. פתרונות נבחרים שאלה 1:

4 נכתוב פונקציה לא רקורסיבית שמדפיסה את כל הנתונים המאוכסנים בעץ בינארי T ב-.Postorder נניח שנתון אובייקט T מסוג Tree שבנוי מקדקודים מסוג,Node ומוגדרות הפעולות הבאות: IsEmpty() - פעולה שמחזירה 1 אם העץ ריק, 0 אחרת. T. בעץ n פעולה שמחזירה את הילד השמאלי של קדקוד - LeftChild(Node (n T. בעץ n פעולה שמחזירה את הילד הימני של קדקוד RightChild(Node (n T. בעץ n פעולה שמחזירה את הנתונים המאוכסנים בקדקוד - Retrieve(Node (n T. פעולה המחזירה את הקדקוד שהוא שורש העץ - Root() נשתמש במחסנית כבמבנה נתונים נוסף. במחסנית נשמור רשומות שיכילו את שם הקדקוד שבו ביקרנו, ושדה visited שיספור בכמה מילדיו כבר ביקרנו. כך רשומה במחסנית תוגדר להיות: struct SType{ Node node; // a node in the tree. int visited; // number of children of node that were visited. ; על המחסנית מסוג Stack מוגדרות הפעולות הרגילות של מחסניות. בנוסף אנו מגדירים פונקציה (v Create_and_Push(Node,n int אשר יוצרת רשומה מסוג SType שבה הקדקוד הוא n וערך השדה Pop() הפעולה S. הרגילה את הרשומה הזאת למחסנית Push ודוחפת בעזרת פעולת ה- v, הוא visited מחזירה רשומה מסוג.Stype void NPostOrder(Tree T) { SType current; // current node in tree, and number of children visited. Stack S; // Stack of items of type SType. if (!T.IsEmpty()) { S.MakeEmpty(); S.Create_And_Push(T.root(), 0); while (!S.IsEmpty(){ current = S.Pop(); if (current.visited == 0){ // visit left child of current. S.Create_And_Push(current.node, 1); if (T.LeftChild(current.node)!= NULL) S.Create_And_Push(T.Leftchild(current.node), 0); else if (current.visited == 1){ else // visit right child of current. S. S.Create_And_Push(current.node, 2); if (T.RightChild(current.node)!= NULL) S.Create_And_Push(T.Rightchild(current.node), 0); // both children visited print current. cout << T.Retrieve(current.node); שאלה 2: תאור עילי של האלגוריתם: 1. נעבור על העץ רמה-רמה. 2. בתחילת כל איטרציה יהיו ב- Q1 כל האיברים של הרמה הנוכחית שהמסלול אליהם מהשורש מכיל רק נתונים זוגיים. Q2 יהיה ריק.

5 נשתמש עתה ב- Q1 כדי לשים ב- Q2 את כל האיברים של הרמה הבאה שהמסלול אליהם מהשורש מכיל רק נתונים זוגיים. תוך כדי כך נרוקן את Q1. נחליף את תפקידיהם של Q1 ו- Q הערות: I) השימוש בשני תורים מאפשר לנו לדעת מתי נגמרת רמה. (II בתורים נשמור את הכתובות לצמתים, בכדי שנוכל להמשיך ולגשת לילדים שלהם. LongestEvenPath(Tree T) { Q1.MakeEmpty() Q2.MakeEmpty() Len = 0 if ( T.data is even ) Q1.EnQueue(T) while (!Q1.IsEmpty( ) ){ while (!Q1.IsEmpty ( ) ){ temp = Q1.DeQueue() if ( temp.left exists and temp.left.data is even ) Q2.EnQueue(temp.left) if ( temp.right exists and temp.right.data is even ) Q2.EnQueue(temp.right) Len++ Change roles of Q1 and Q2 return Len תאור מפורט של האלגוריתם:

6 class TNode{ private: ; public: Type data; TNode * left, * right; int IsRight, IsLeft; TNode(Type x); ~TNode();. שאלה 3: א. הנה ההגדרה ב- ++C של קדקוד בעץ חיפוש מחויט: class Threaded{ private: ; public: TNode * root; Threaded(); ~Threaded(); void Insert(Type x);. TNode::TNode(Type x) { data = x; IsRight = IsLeft = 0; left = right = NULL; וההגדרה עבור העץ תהיה: ה- constructor של הקדקוד יהיה: ב. הפונקציה Insert דומה לפונקציה Insert בעץ חיפוש רגיל, רק שעלינו לעדכן גם את השדות left, right ואת השדות IsRight, IsLeft של הקדקוד החדש ושל ההורה שלו. void Threaded::Insert(Type x) { TNode * newnode = new TNode(x); TNode * temp = root; TNode * parent = NULL; // new allocated node. // current node in tree. // parent of temp. while (temp!= NULL){ // find parent of newnode. parent = temp; if (temp->data > x) { if (temp->isleft == 1) temp = temp->left; else temp = NULL; else { if (temp->isright == 1) temp = temp->right; else temp = NULL; If (parent == NULL) // insert newnode as root. root = newnode;

7 else if (parent->data > x){ // insert newnode as left child of parent newnode->right = parent; // parent is successor of newnode newnode->left = parent->left; // left child of parent is predecessor of newnode parent->left = newnode; parent->isleft = 1; else{ // insert newnode as right child of parent newnode->right = parent->right; newnode->left = parent; parent->right = newnode; parent->isright = 1; ג. הפונקציה Inorder שעוברת על העץ בצורה לא רקורסיבית תיעזר כמובן במצביעים.left,right void Threaded::Inorder(void) { TNode * temp = root; // current position in tree. if (temp!= NULL){ while (temp->isleft == 1) // start visiting from leftmost node in tree. temp = temp ->left; while (temp!= NULL){ cout << temp->data >> ; // visit node if (temp->isright == 0) // node has no right child go to its successor temp = temp->right; else{ // node has a right child - successor is // leftmost node in right subtree temp = temp->right; while (temp->isleft == 1) temp = temp ->left; את שאלה 4: א. נסמן ב- N את מספר הצמתים הכללי בעץ, ב- Nleaves את מספר העלים בעץ, וב- N 2deg מספר הקודקודים מדרגה 2 (בעלי שני ילדים).. Nleaves = N 2deg+ נוכיח באינדוקציה על N ש, - 1 בסיס האינדוקציה:,N=1 בעץ יש קדקוד בודד. = 0 deg, Nleaves = 1, N 2 ואכן. Nleaves = N 2deg+ 1 הנחת האינדוקציה: נניח שלעץ ' T עם N-1 צמתים מתקיים, + 1 ') T Nleaves( T ') = N 2deg( שלב המעבר: נוכיח שגם לעץ T עם N צמתים מתקיים, + 1 ) T. Nleaves( T ) = N 2deg( בהינתן עץ T עם N צמתים, כידוע בכל עץ יש עלה נסמן:ב- x עלה בעץ T, ב- y את ההורה של x, וב- ' T, את העץ המתקבל מ- T אחרי הסרת x מהעץ. ב- ' T יש N-1 צמתים, ולכן עפ"י הנחת האינדוקציה + 1 ') T. Nleaves( T ') = N2deg( נפצל לשני מקרים: I) ב- x T היה בן יחיד של (y y היה ב- T מדרגה 1):

8 במקרה זה מספר העלים ב- ' T הוא כמספר העלים ב- T (הסרת x הפכה את y להיות עלה). כמו כן מספר הצמתים מדרגה 2 נשאר אף הוא ללא שינוי, כלומר:. Nleaves( T ') = Nleaves( T ), N 2deg( T ') = N 2deg( T ) והיות ש- + 1 ') T, Nleaves( T ') = N 2deg( גם + 1 ) T. Nleaves( T ) = N 2deg( (II ב- x T היה בן שני של (y y היה ב- T מדרגה 2): במקרה זה מספר העלים ב- ' T קטן ב- 1 ממספר העלים ב- T (הסרת x לא הפכה את y להיות עלה). וכן מספר הצמתים מדרגה 2 אף הוא קטן ב- 1 (לפני הסרת y x היה מדרגה 2, ואחרי ההסרה לא), כלומר:. Nleaves( T ') = Nleaves( T ) 1, N 2deg( T ') = N 2deg( T ) 1 והיות ש- + 1 ') T, Nleaves( T ') = N 2deg( אזי. Nleaves( T ) = N2deg( T ) כלומר + 1, Nleaves( T ) 1 = N 2deg( T ) 1+ 1 ב. נוכיח באינדוקציה על גובה העץ h ש, בעץ בינארי שלם מגובה h יש 1+h 1 2 קדקודים. בסיס האינדוקציה: 0=h, כלומר בעץ יש קדקוד בודד. ואכן, = נניח שהטענה נכונה עבור עצים מגובה h, ונוכיח לעצים מגובה 1+h. עץ שלם מגובה 1+h בנוי משורש שאליו מחוברים שני עצים שלמים מגובה h כל אחד. לפי הנחת האינדוקציה בעץ שלם מגובה h יש 1+h 1 n = 2 קדקודים. לכן, סה"כ מספר הקדקודים בעץ השלם מגובה h+1 הוא: h+2 1.(2 h+1 1)+ (2 h+1 1) + 1 = 2 ג. מספר העלים בעץ בינארי שלם בעל n קדקודים הוא 2/(1+n). נוכיח תחילה באינדוקציה על גובה העץ h, שבעץ בינארי שלם מגובה h, יש 2 h עלים. בסיס האינדוקציה: 0=h, בעץ יש קדקוד בודד ואכן = נניח שהטענה נכונה לעצים מגובה h, ונוכיח לעצים מגובה 1+h. בעץ בינארי שלם מגובה h יש לפי הנחת האינדוקציה 2 h עלים. עץ שלם מגובה 1+h יתקבל ממנו ע"י הוספת רמה שלמה של עלים. אנחנו מוסיפים שני עלים על כל עלה שהיה קיים והפך לקדקוד פנימי. לכן בסה"כ מספר העלים בעץ מגובה 1+h יהיה 1+h 2 2 h = 2 כנדרש. כעת, לפי סעיף ב' בעץ מלא מגובה יש 1+h 1 2=n קדקודים סה"כ, והראינו כעת שמתוכם יש 2 h עלים. ולכן מספר העלים כפונקציה של n הוא: 2/(1+n). שאלה 5: האלגוריתם למציאת העוקב Successor של מספר x בעץ חיפוש יהיה: אם ל- x יש ילד ימני אז העוקב של x הוא המינימום בתת-עץ ימין של x. אחרת העוקב של x הוא ההורה הקדמון הכי נמוך של x שילדו השמאלי גם הוא הורה-קדמון של x. כדי למצוא את העוקב הזה y נלך מ- x למעלה עד שנמצא קדקוד שהוא ילד שמאלי של ההורה שלו. העוקב של x יהיה ההורה של הקדקוד הזה. (הערה: ייתכן בהחלט שהעוקב הוא ההורה הישיר של x. במקרה זה הוא יימצא מייד בתחילת לולאת ה-.(while Successor(Node x) { if (RightChild(x)!= NULL) return Min(RightChild(x)); y = Parent(x); while ((y!= NULL) && (x == RightChild(y)){ x = y; y = Parent(y); return y;

9 הפונקציה (n Min(Node מחזירה את המינימום בתת-עץ שהשורש שלו הוא n. יעילות האלגוריתם היא Θ(h) כאשר h גובה העץ. שאלה 6: א. הטענה נכונה. אפשר להוכיח זאת באינדוקציה על מספר האיברים בעץ, כאשר את הנחת האינדוקציה מפעילים על שני תתי העצים של השורש. ב. הטענה אינה נכונה. דוגמה נגדית: ג. הטענה אינה נכונה. דוגמה נגדית: T 3 3 T שאלה 7: א) הנה העץ המתקבל לאחר הוספת והנה העץ המתקבל לאחר הורדת 3.

10 שאלה 7, סעיף ב( i ) פתרון 1: מתבסס על כך שאם סורקים עץ בינארי בסדר inorder מקבלים סדרה ממוינת (עולה) אם ורק אם העץ הוא עץ חיפוש. הנה תיאור מפורט של האלגוריתם (כולל פונקצית עזר): אלגוריתם IsSearchTree מקבל עץ, מחזיר ערך אמת true) או (false אתחל מערך A של מספרים שגודלו כמספר הצמתים בעץ אתחל ערך index ל 0 קרא ל InorderToA עם השורש כפרמטר לכל index מ 0 עד 2-n אם A[index+1] A[index] > החזר false החזר true אלגוריתם InorderToA מקבל מצביע לצומת node אם node אינו NULL קרא ל InorderToA רקורסיבית עם תת העץ השמאלי של node כפרמטר תן ל A[index] את הערך שבצומת node הגדל את index ב 1 קרא ל InorderToA רקורסיבית עם תת העץ הימני של node כפרמטר, וכך גם המעבר על המערך). יעילות: Θ(n) (סריקה ב inorder לוקחת זמן Θ(n) הערות: את מספר הצמתים בעץ ניתן לחשב בעזרת אלגוריתם שגם הוא סורק את העץ בסדר inorder ובכל ביקור בצומת מגדיל מונה ב 1. היעילות לא תשתנה. במקום מערך ניתן להשתמש בתור, או מחסנית (במקרה של מחסנית יש להפוך את כוון ההשוואות). למעשה מספיק משתנה עזר בודד שישמור את הערך של הצומת האחרון שבקרנו בו, אם נבצע את ההשוואות תוך כדי הסריקה ב. inorder פתרון 2: סריקת העץ תוך בדיקה בכל צומת שתוכן הצומת גדול מהערך המקסימלי בתת העץ השמאלי וקטן מהערך המינימלי בתת העץ הימני. (לא מספיק להשוות לבן השמאלי והימני!). תיאור מפורט של האלגוריתם (כולל פונקצית עזר): אלגוריתם IsSearchTree מקבל עץ, מחזיר ערך אמת true) או (false אם העץ ריק החזר true אחרת קרא ל IsSearchTree1 עם השורש והחזר את הערך המוחזר מהקריאה (אין חשיבות לערכים שיוחזרו דרך שני הפרמטרים הנוספים)

11 אלגוריתם IsSearchTree1 מקבל מצביע לצומת node מחזיר ערך אמת true) או (false וכאשר מוחזר true יוחזרו בנוסף שני ערכים min ו max (למשל בעזרת פרמטרים ref נוספים) אם ל node אין ילדים החזר את הערך, true וב max וב min את הערך שבצומת (כלומר ( node->data אם ל node יש בן שמאלי קרא רקורסיבית ל IsSearchTree1 על הבן השמאלי של node אם הוחזר false החזר false אחרת (הוחזר true וכן ערך של lmin ושל ( lmax אם הערך שבצומת קטן מ lmax החזר false אחרת min מקבל את הערך של lmin אחרת (ל node אין בן שמאלי) min מקבל את הערך שבצומת אם ל node יש בן ימני קרא רקורסיבית ל IsSearchTree1 על הבן הימני של node אם הוחזר false החזר false אחרת (הוחזר true וכן ערך של rmin ושל ( rmax אם הערך שבצומת גדול מ rmin החזר false אחרת max מקבל את הערך של rmax אחרת (ל node אין בן ימני) max מקבל את הערך שבצומת החזר true ועת הערכים max ו min שחושבו יעילות: Θ(n) (האלגוריתם מבקר בכל צומת, ומבצע בה מספר קבוע של פעולות). שאלה 7, סעיף ב( ii ) פתרון 1: שיעילותו אינה הטובה ביותר, משתמש בפונקצית עזר לחישוב גובה של עץ: אלגוריתם IsAvlTree מקבל עץ, מחזיר ערך אמת true) או (false אם T הוא עץ חיפוש בינרי (בדיקה ע"י האלגוריתם מסעיף א') קרא ל IsAvlTree1 עם השורש והחזר את הערך המוחזר מהקריאה אחרת החזר false אלגוריתם IsAvlTree1 מקבל מצביע לצומת,node מחזיר ערך אמת true) או (false אם node הוא העץ הריק (Null) החזר true אם קריאה רקורסיבית של IsAvlTree1 על תת עץ שמאל של node מחזירה true וגם קריאה רקורסיבית של IsAvlTree1 על תת עץ ימין של node מחזירה true וגם הערך המוחלט של הפרש גבהי תתי העצים קטן מ 2 כלומר < 2 node->right) height( node->left)-height( החזר true אחרת (לפחות אחד מ 3 התנאים הללו הוא ( false החזר false אלגוריתם height מחזיר מספר שלם: אם T הוא העץ הריק (Null) החזר ערך 1-

12 אחרת החזר 1 ועוד המקסימום מבין T->left) height( ו T->right) height( יעילות: בגלל הקריאות לחישוב הגובה מתקבלת נוסחת הנסיגה: T(n) = T(m) + T(n-m-1) + Θ(m) + Θ(n-m+1) = T(m) + T(n-m-1) + Θ(n) כש m הוא מס' הצמתים בתת העץ השמאלי => m => n 0 (חישוב גובה עבור עץ בעל p צמתים לוקח זמן Θ(p), כי מבקרים בכל צומת ומבצעים בה מספר קבוע של פעולות). ולכן מתקבל הזמן (n Θ(n log במקרה הטוב ועבור עץ אקראי, ) 2 Θ(n במקרה הגרוע. פתרון 2: יותר יעיל (למעשה זהו מימוש יותר יעיל של אותו האלגוריתם, על ידי האחדת החישוב של.(height עם IsAvlTree אלגוריתם IsAvlTree מקבל עץ, מחזיר ערך אמת true) או (false אם T הוא העץ הריק (Null) החזר true אם T הוא עץ חיפוש בינרי (בדיקה ע"י האלגוריתם מסעיף א') קרא ל IsAvlTree1 עם השורש והחזר את הערך המוחזר מהקריאה (אין חשיבות לערך שיוחזר דרך הפרמטר הנוסף) אחרת החזר false אלגוריתם IsAvlTree1 מקבל מצביע (לא (NULL לצומת node מחזיר ערך אמת true) או (false וכאשר מוחזר true יוחזר בנוסף ערך height (למשל בעזרת פרמטר ref נוסף) אם ל node אין ילדים החזר את הערך, true וב height החזר 0 אם ל node יש בן שמאלי קרא רקורסיבית ל IsAvlTree1 על הבן השמאלי של node אם הוחזר false החזר false אחרת (הוחזר true וכן ערך של ( lheight אחרת (ל node אין בן שמאלי) lheight מקבל את הערך 0 אם ל node יש בן ימני קרא רקורסיבית ל IsAvlTree1 על הבן הימני של node אם הוחזר false החזר false אחרת (הוחזר true וכן ערך של ( rheight אחרת (ל node אין בן ימני) rheight מקבל את הערך 0 תן ל height את הערך 1 ועוד המקסימום של lheight ו rheight החזר true יעילות: האלגוריתם מבקר בכל צומת, ומבצע בה מספר קבוע של פעולות ולכן זמן הריצה הוא Θ(n). דרך אחרת לחישוב זמן הריצה היא לחשב את נוסחת הנסיגה: T(n) = T(m) + T(n-m-1) + Θ(1) כש m הוא מס' הצמתים בתת העץ השמאלי => m => n 0 ואכן מתקבל הזמן Θ(n) במקרה הגרוע (פתרון נוסחת הנסיגה בלתי תלוי בערך של m בכך שלב). הערות: ניתן לכתוב וריאציה על IsAvlTree1 שתחזיר את גובה העץ אם הוא עץ AVL ו 1- אם לא. במקרה זה אין צורך בפרמטר העזר.

13 שאלה 8: x את ה- ADT הנ"ל נשמור בעץ 2-3 שממוין עפ"י היחס ) ( של הנקודות הנשמרות במבנה, כל אחד מנתוניו y x יהיה מצביע לעץ 2-3 נוסף המכיל את הנקודות בעלי אותו יחס. עץ זה יהיה ממוין עפ"י קואורדינטת ה- x y של הנקודה, והנתונים בו יהיו הנקודות עצמן (נשים לב שלא יתכנו שתי נקודות בעלות אותו יחס, ואותה קואורדינטת x). לצורך מימוש ה- ADT נשתמש אם כן בשני סוגים של עצי 2-3: PointsTree העץ שיכיל את כל הנקודות בעלות אותו היחס. ממוין עפ"י: יחס הסדר של מספרים ממשיים. טיפוס הנתונים: נקודות מהצורה (y,x). FactorsTree העץ שיכיל את המצביעים לעצים בעלי אותו יחס. ממוין עפ"י: יחס הסדר של מספרים ממשיים. טיפוס הנתונים: מצביע לעץ.PointsTree המחלקה שתממש את ה- ADT תכיל מצביע מהצורה:.FactorsTree* root להלן המימוש של הפעולות הנדרשות: Insert(x, y){ PointsTree* PointsT; PointsT = root->find( x y ); if (PointsT == NULL){ PointsT = new PointsTree; PointsT->Insert ( x, (x,y) ); root->insert( x, PointsT ); y else PointsT->Insert ( x, (x,y) ); ניתוח יעילות: נשים לב שבעץ root יש לכל היותר n נתונים (עצים עם נקודות בעלי אותו יחס), היות שלא ייתכנו יותר מ- n יחסים שונים. כמו כן בכל PointsTree לא יהיו יותר מ- n נקודות, היות שסה"כ יש n נקודות. ולכן ה- Find ייקח ((n,o(log( וגם כל אחת מההכנסות (לשני סוגי העצים) תיקח ((n,o(log( וסה"כ יפעל האלגוריתם ב- ((n.o(log( Point* Delete(x, y){ PointsTree* PointsT; Point* P=NULL; PointsT = root->find( x y ); if (PointsT!= NULL){ P = PointsT->Delete( x ); if (PointsT->IsEmpty( ) ) root->delete( x y ); return P; ניתוח יעילות:

14 מאותם שיקולים, ה- Find ייקח ((n,o(log( וגם ה- Delete ייקח ((n,o(log( וסה"כ יפעל האלגוריתם ב-.O(log( n)) SameFactor(x, y){ PointsTree* PointsT;. Θ( k) PointsT = root->find( x y ); if (PointsT!= NULL) PointsT->Print( ); ניתוח יעילות: מאותם שיקולים, ה- Find ייקח ולכן סה"כ: n)). Ok ( + log( ((n,o(log( ואם בעץ הנקודות יש k נקודות אז ה- Print ייקח

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

áùçîä éòãîì äîâîä ÌÈÏÈ ÂÁ

áùçîä éòãîì äîâîä ÌÈÏÈ ÂÁ åôé-à"ú ìù úéîã àä äììëîä áùçîä éòãîì äîâîä :ÌÈ Â È Ó ÌÈÏÈ ÂÁ הנחיות כלליות: יש להגיש את כל התרגילים בזמן (זמני ההגשה מצוינים בסילבוס הקורס). ציונו של תרגיל שיוגש באיחור יהיה 0, למעט מקרים חריגים כגון

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

השאלות..h(k) = k mod m

השאלות..h(k) = k mod m מבני נתונים פתרונות לסט שאלות דומה לשאלות מתרגיל 5 השאלות 2. נתונה טבלת ערבול שבה התנגשויות נפתרות בשיטת.Open Addressing הכניסו לטבלה את המפתחות הבאים: 59 88, 17, 28, 15, 4, 31, 22, 10, (מימין לשמאל),

Διαβάστε περισσότερα

מבני נתונים עצים שיעור 7

מבני נתונים עצים שיעור 7 בס ד מבני נתונים עצים שיעור 7 שי גולן כ ח בניסן, תשע ו 6 במאי 2016 תקציר בתרגול זה נתחיל לדון בעצים. נגדיר עצים כלליים ועצים בינאריים, ונציג את ההגדרות הבסיסיות בתחום. נתרגל הוכחת תכונות של עצים באמצעות

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

םינותנ ינבמ 3 ליגרתמ תולאשל המוד תולאש טסל תונורתפ תולאשה

םינותנ ינבמ 3 ליגרתמ תולאשל המוד תולאש טסל תונורתפ תולאשה מבני נתונים פתרונות לסט שאלות דומה לשאלות מתרגיל 3 השאלות נתונה רשימה משורשרת L המכילה n מספרים שלמים חיוביים מתחום לא חסום כאשר 1 k n = 2 עבור > 0 k כלשהו. נניח שהמספרים ברשימה מקיימים את התכונה הבאה:

Διαβάστε περισσότερα

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE סמסטר אביב תשס"ו מס' סטודנט:

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE סמסטר אביב תשסו מס' סטודנט: TECHNION ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מבני נתונים 234218 1 מבחן מועד ב ' סמסטר אביב תשס"ו מרצה: אהוד ריבלין מתרגלים: איתן

Διαβάστε περισσότερα

( n) ( ) ( ) שאלה 1: שאלה 2: שאלה 3: (n 5) = Θ. ב. אם f 1, f 2, g 1, g 2. .g 1 *g 2 = Ω(f 1 *f 2 ) , g. ג. ) n.n! = θ(n*2. n) f ( אז ד. אם ה. אם ו.

( n) ( ) ( ) שאלה 1: שאלה 2: שאלה 3: (n 5) = Θ. ב. אם f 1, f 2, g 1, g 2. .g 1 *g 2 = Ω(f 1 *f 2 ) , g. ג. ) n.n! = θ(n*2. n) f ( אז ד. אם ה. אם ו. נתונים מבני לקט שאלות ממבחנים - 0 - ניתוח סדרי גודל ב. שאלה 1: הוכיחו או הפריכו את הטענות הבאות ישירות על ידי שימוש בהגדרות 3 3 א. ) =Ω( log( ) =Ω( ) ( ) log(log ) = O ( 5) log (+ 5) = O() 6 ( 10 ) =Θ(

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

מבני נתונים ואלגוריתמים תרגול #3 נושאים: תור קדימויות/ערימה, עצים

מבני נתונים ואלגוריתמים תרגול #3 נושאים: תור קדימויות/ערימה, עצים מבני נתונים ואלגוריתמים תרגול #3 נושאים: תור קדימויות/ערימה, עצים חזרה מבנה נתונים אמצעי לאחסון נתונים במחשב. יש הרבה סוגים שונים, וצריך להשתמש במבנה שהכי מתאים לבעיה שלנו מבחינת שימוש בנתונים הוספה, מחיקה

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

2 יח"ל ) השלמה ל - 5 יח"ל) (50 נקודות) מעבר חוקי, ו-'שקר' אחרת.

2 יחל ) השלמה ל - 5 יחל) (50 נקודות) מעבר חוקי, ו-'שקר' אחרת. 1 6 מאי, 2004 מועד הבחינה: 2 יח"ל ) השלמה ל - 5 יח"ל) פרק ראשון (50 נקודות) :1 Ï (מקור: שירלי רוזנברג כהן) נגדיר טיפוס נתונים חדש בשם תלת-מחסנית, כמבנה המכיל 3 מחסניות S3. S2, S1, נגדיר את הפעולות הבאות

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

מבני נתונים 08a תרגול 8 14/2/2008 המשך ערמות ליאור שפירא

מבני נתונים 08a תרגול 8 14/2/2008 המשך ערמות ליאור שפירא מבני נתונים 08a תרגול 8 14/2/2008 המשך ערמות ליאור שפירא ערמות פיבונאצ'י Operation Linked List Binary Heap Binomial Heap Fibonacci Heap Relaxed Heap make-heap 1 1 1 1 1 is-empty 1 1 1 1 1 insert 1 log

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

מבני נתונים מבחן מועד ב' סמסטר חורף תשס"ו

מבני נתונים מבחן מועד ב' סמסטר חורף תשסו TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד ב' סמסטר חורף תשס"ו

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

מבני נתונים ויעילות אלגוריתמים

מבני נתונים ויעילות אלגוריתמים מבני נתונים ויעילות אלגוריתמים (8..05). טענה אודות סדר גודל. log טענה: מתקיים Θ(log) (!) = הוכחה: ברור שמתקיים: 3 4... 4 4 4... 43 פעמים במילים אחרות:! נוציא לוגריתם משני האגפים: log(!) log( ) log(a b

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

דוגמה: יהי T עץ בינארי כפי שמתואר בציור הבא:

דוגמה: יהי T עץ בינארי כפי שמתואר בציור הבא: של שאלות מבחינות פתרונות.1 שאלהזוהופיעהבמבחןמועדג 01 דוגמה: יהי T עץ בינארי כפי שמתואר בציור הבא: הגדרות: עבור צומת בעץ בינארי T נסמן ב- T את תת העץ של T ששורשו. (תת העץ הזה כולל את ). נגדיר את תת העץ

Διαβάστε περισσότερα

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t. תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון

Διαβάστε περισσότερα

עצי 2-3 תזכורת: בנים. דוגמאות: Chapter 19: B trees ( ) Chapter 15: Augmenting data structures ( )

עצי 2-3 תזכורת: בנים. דוגמאות: Chapter 19: B trees ( ) Chapter 15: Augmenting data structures ( ) עצים מאוזנים Lecture 5 of Geiger & Itai s slide brochure www.cs.technion.ac.il/~dang/courseds תזכורת: משפחת עצים נקראת מאוזנת אם ( h. = (log עצי -3 ועצי דרגות עצי AVL הם עצים מאוזנים. עצי 3- מהווים דוגמא

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

מבני נתונים הגבלת אחריות פרק - 1 אלגוריתמי מיון ואנליזה אסימפטוטית. מיון בועות Sort Bubble מאת : סשה גולדשטיין,

מבני נתונים הגבלת אחריות פרק - 1 אלגוריתמי מיון ואנליזה אסימפטוטית. מיון בועות Sort Bubble מאת : סשה גולדשטיין, 009 מבני נתונים סיכום למבחן, יולי sashag@cs מאת : סשה גולדשטיין, 7:50,3.7.09 עדכון אחרון : בשעה הגבלת אחריות הסיכום להלן הוא האינטרפרטציה שלי של החומר, שממש לא חייבת להיות נכונה או מייצגת את זו של הסגל.

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

מיונים א': מיון (Sorting) HeapSort. QuickSort תור עדיפויות / ערימה

מיונים א': מיון (Sorting) HeapSort. QuickSort תור עדיפויות / ערימה מיון (Sorting) void BubbleSort(int* A, int n){ for (i = ; i < n-; i++) for (j = n-; j >= i; j--) if ( a[j] > a[j+]) swap(&a[j], &a[j+]); מערך בן מספרים. קלט: מערך ובו המספרים מאוחסנים בסדר עולה (או יורד).

Διαβάστε περισσότερα

מבחן מועד ב' בהצלחה! אנא קיראו היטב את ההוראות שלהלן: ודאו כי כל עמודי הבחינה נמצאים בידכם.

מבחן מועד ב' בהצלחה! אנא קיראו היטב את ההוראות שלהלן: ודאו כי כל עמודי הבחינה נמצאים בידכם. 7.8.2017 מבחן מועד ב' תאריך הבחינה: שמות המרצים: מר בועז ארד פרופ' עמוס ביימל מר יהונתן כהן דר' עדן כלמטץ' גב' מיכל שמש אנא קיראו היטב את ההוראות שלהלן: שם הקורס: תכנון אלגוריתמים מספר הקורס: 202-1-2041

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

מבני נתונים מבחן מועד א' סמסטר אביב תשס"ו

מבני נתונים מבחן מועד א' סמסטר אביב תשסו TECHNION ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: אהוד ריבלין מבני נתונים 234218 1 מבחן מועד א' סמסטר אביב תשס"ו מתרגלים: איתן

Διαβάστε περισσότερα

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

מיון. 1 מיון ערימה (Heapsort) חלק I 1.1 הגדרת ערימה 0.1 הגדרה של המושג מיון מסקנה: הערך הכי גבוה בערימה נמצא בשורש העץ!

מיון. 1 מיון ערימה (Heapsort) חלק I 1.1 הגדרת ערימה 0.1 הגדרה של המושג מיון מסקנה: הערך הכי גבוה בערימה נמצא בשורש העץ! מיון ערימה (Heapsort) מבני נתונים חלק I מיון מבני נתונים ד"ר ערן לונדון. הגדרת ערימה ערימה (בינארית) הינה מערך אשר ניתן להציגו כמו עץ בינארי מלא או כמעט מלא כאשר כל קודקוד בעץ מתאים לתא במערך. העץ הינו

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

תוכן עניינים I בעיות מיון 2 1 סימון אסימפטוטי... 2 II מבני נתונים 20 8 מבני נתונים מופשטים משפט האב גרפים... 37

תוכן עניינים I בעיות מיון 2 1 סימון אסימפטוטי... 2 II מבני נתונים 20 8 מבני נתונים מופשטים משפט האב גרפים... 37 תוכן עניינים I בעיות מיון 2 1 סימון אסימפטוטי................................................ 2 2 מיון בועות. Bubble Sort............................................ 2 3 מיון מיזוג. Merge Sort............................................

Διαβάστε περισσότερα

logn) = nlog. log(2n

logn) = nlog. log(2n תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

עץץץץ AVL. עץ AVL הוא עץ חיפוש בינארי שמקיים את התנאי הבא: לכל צומת x בעץ גורם האיזון של x הוא 1, 0, או 1-. הגדרה: במילים אחרות: לכל צומת x בעץ,

עץץץץ AVL. עץ AVL הוא עץ חיפוש בינארי שמקיים את התנאי הבא: לכל צומת x בעץ גורם האיזון של x הוא 1, 0, או 1-. הגדרה: במילים אחרות: לכל צומת x בעץ, עץץץץ AVL הגדרה: עץ AVL הוא עץ חיפוש בינארי שמקיים את התנאי הבא: לכל צומת x בעץ גורם האיזון של x הוא 1,, או 1-. h(t left(x) ) - h(t right(x) ) 1 במילים אחרות: לכל צומת x בעץ, בעץ AVL שומרים עבור כל צומת

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול

Διαβάστε περισσότερα

תורת הגרפים - סימונים

תורת הגרפים - סימונים תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא

Διαβάστε περισσότερα

מבני נתונים (234218) 1

מבני נתונים (234218) 1 מבני נתונים (234218) 1 חומר עזר לבחינה 13 בספטמבר 2016 שימו לב: מותר לצטט טענות המופיעות בדף זה ללא הוכחה. כל טענה אחרת, שאינה מופיעה באופן מפורש, יש לנמק באופן מלא. נימוקים מהצורה "בדומה לטענה שבחומר

Διαβάστε περισσότερα

תאריך הבחינה: שם המרצה: רפי כהן שם המתרגל: יסודות מבני נתונים שם הקורס:

תאריך הבחינה: שם המרצה: רפי כהן שם המתרגל: יסודות מבני נתונים שם הקורס: תאריך הבחינה:... נובה פנדינה שם המרצה: רפי כהן שם המתרגל: יסודות מבני נתונים שם הקורס:..00 מספר הקורס:. סמסטר: א' מועד: שנה: שלוש שעות משך הבחינה: ללא חומר עזר חומר עזר: ב' הנחיות חשובות: רצוי לפתור את

Διαβάστε περισσότερα

מבני נתונים ויעילות אלגוריתמים

מבני נתונים ויעילות אלגוריתמים חידה לחימום בסל מקש יש צמר. כדורי 00 שני שחקנים משחקים בתורות: כל שחקן, בתורו, צריך להוציא כמות כלשהי של כדורי צמר מהסל לפחות כדור אחד, אך לא יותר ממחצית מכמות כדורי הצמר שבסל. מי שלא יכול לעשות מהלך (מתי

Διαβάστε περισσότερα

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

מבני נתונים מבחן מועד א' סמסטר חורף תשס"ו

מבני נתונים מבחן מועד א' סמסטר חורף תשסו TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד א' סמסטר חורף תשס"ו

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ).

פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ). מבוא לפרק: : עצים.(ree) עצים הם גרפים חסרי מעגלים. כך, כיוון פרק זה הוא מעין הפוך לשני הפרקים הקודמים. עץ יסומן לרב על ידי במשפטים 8.1-8.3 נפתח חלק מתכונותיו, ובהמשך נדון בהיבטים שונים של "עץ פורש" של

Διαβάστε περισσότερα

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר

Διαβάστε περισσότερα

חלק א' שאלה 3. a=3, b=2, k=0 3. T ( n) היותר H /m.

חלק א' שאלה 3. a=3, b=2, k=0 3. T ( n) היותר H /m. פתרון למבחן במבני נתונים, מועד א', קיץ 2005 חלק א' שאלה 1 א. רכיב הקשירות החזק של קודקוד x בגרף מכוון הינו אוסף כל הקודקודים y שמקימים שיש מסלול מ- x ל- y וכן מסלול מy ל- x. טעויות נפוצות שכחו לכתוב שזה

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

' 2 סמ ליגרת ןורתפ םיפרגה תרותב םימתירוגלא דדצ 1 : הלאש ןורתפ רבסה תורעה

' 2 סמ ליגרת ןורתפ םיפרגה תרותב םימתירוגלא דדצ 1 : הלאש ןורתפ רבסה תורעה אלגוריתמים בתורת הגרפים פתרון תרגיל מס' 2 לשאלות והערות נא לפנות לאילן גרונאו (shrilan@cs.technion.ac.il) א) ב) ג) גרף דו-צדדי (bipartite) הינו גרף (E )G V, אשר קיימת חלוקה של צמתיו לשתי קבוצות U,W e =

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

םינותנ ינבמ (הנכות ידימלתל)

םינותנ ינבמ (הנכות ידימלתל) מבני נתונים (לתלמידי תוכנה) 0368.2158 מועד ב', גירסה 1 2 מתוך 2 שיטת האב Method Master n Tn ( ) = at( ) + fn ( ) b logba logba ε Θ ( n ) if : ε > 0, f( n) = O( n ) logba logba Tn ( ) = Θ ( n lg n) if:

Διαβάστε περισσότερα

מבני נתונים. אחרי שלב זה המשיכו והריצו את מיון מהיר על המערך. תארו את כל שלבי הרקורסיה, אך עתה אין צורך להיכנס לתיאור הריצה של.

מבני נתונים. אחרי שלב זה המשיכו והריצו את מיון מהיר על המערך. תארו את כל שלבי הרקורסיה, אך עתה אין צורך להיכנס לתיאור הריצה של. מבני נתונים תרגיל 2 פתרונות מיון מהיר 1. הריצו את השיטה partition על המערך הבא. הראו את שלבי הריצה השונים. 6, 10, 20, 4, 2, 15, 5, 99, 12, 1 אחרי שלב זה המשיכו והריצו את מיון מהיר על המערך. תארו את כל

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

Nir Adar גירסה 1.00 עמוד 1

Nir Adar    גירסה 1.00 עמוד 1 גירסה 1.00 מבני נתונים מסמך זה הורד מהאתר. אין להפיץ מסמך זה במדיה כלשהי, ללא אישור מפורש מאת המחבר. מחבר המסמך איננו אחראי לכל נזק, ישיר או עקיף, שיגרם עקב השימוש במידע המופיע במסמך, וכן לנכונות התוכן

Διαβάστε περισσότερα

אלגוריתמים 1, סמסטר אביב 2017

אלגוריתמים 1, סמסטר אביב 2017 BFS, DFS, Topological Sort תרגיל בית 1 מוסכמות והנחות להלן רשימת הנחות ומוסכמות אשר תקפות לכל השאלות, אלא אם כן נכתב אחרת במפורש בגוף השאלה. עליכם להוכיח נכונות ולנתח סיבוכיות עבור כל אלגוריתם מוצע. במידה

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות

Διαβάστε περισσότερα

אסימפטוטיים תוכנית הקורס עצי AVL עצי 2-3 עצי דרגות סיבוכיות משוערכת מיון מיון שימושים: גרפים איסוף אשפה

אסימפטוטיים תוכנית הקורס עצי AVL עצי 2-3 עצי דרגות סיבוכיות משוערכת מיון מיון שימושים: גרפים איסוף אשפה תוכנית הקורס cs, Technion 2..3.4 מבני נתונים בסיסיים וסימונים אסימפטוטיים מערכים ורשימות מקושרות עצים ועצי חיפוש עצי AVL עצי 2-3 עצי דרגות.5 רשימות דילוגים סיבוכיות משוערכת.6.7.8.9.0..3.4 מטרת הקורס: מבני

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

Trie מאפשר חיפוש, הכנסה, הוצאה, ומציאת מינימום (לקסיקוגרפי) של מחרוזות.

Trie מאפשר חיפוש, הכנסה, הוצאה, ומציאת מינימום (לקסיקוגרפי) של מחרוזות. מילון למחרוזות - Trie Lecture of Geiger & Itai s slide brochure www.cs.technion.ac.il/~dang/courseds מבני נתונים למחרוזות Trie מאפשר חיפוש, הכנסה, הוצאה, ומציאת מינימום (לקסיקוגרפי) של מחרוזות. המימוש

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 7

אלגברה ליניארית 1 א' פתרון 7 אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות

Διαβάστε περισσότερα

מבני נתונים אדמיניסטרציה ד"ר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון:

מבני נתונים אדמיניסטרציה דר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון: מבני נתונים בס"ד, ט' אדר א' תשע"א: שעור 1 אדמיניסטרציה ד"ר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון: בחינת מגן 20%. תרגילים: 14 13, מורידים את האחד הכי גרוע. 10% מהציון. אתר: www.cs.huji.ac.il/~dast

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2

תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2 סריקה לעומק רכיבים אי-פריקים רכיבים קשירים היטב מיון טופולוגי פרק 3 ב- Kleinberg/Tardos פרק 3.3-5 ב- al Cormen et קשירות נעיין שוב בבעיית הקשירות: ל- t? האם יש מסלול מ- s קשירות נעיין שוב בבעיית הקשירות:

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

תוכן הפרק: ,best case, average case דוגמאות 1. זמן - נמדד באמצעות מס' פעולות סיבוכיות, דוגמאות, שיפור בפקטור קבוע האלגוריתם. וגודלם. איטרטיביים. לקלט.

תוכן הפרק: ,best case, average case דוגמאות 1. זמן - נמדד באמצעות מס' פעולות סיבוכיות, דוגמאות, שיפור בפקטור קבוע האלגוריתם. וגודלם. איטרטיביים. לקלט. פרק סיבוכיות פרק סיבוכיות המושג יעילות מהו? במדעי המחשב היעילות נמדדת בעזרת מדדי סיבוכיות, החשובים שבהם: של אלגוריתמים יעילותם תוכן הפרק: יעילות מהי (זיכרון וזמן, זמן ריצה T( של אלגוריתם מהו, מהם case,

Διαβάστε περισσότερα